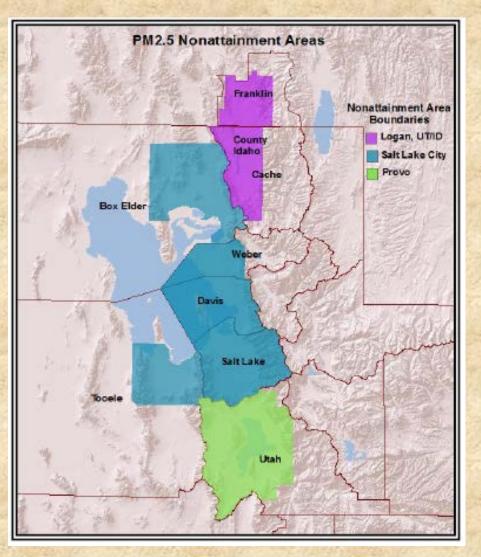
A comparison of AMoN measurements with localized, arrayed passive NH₃ samplers in Northern Utah

Dr. Randal S. Martin Dept. of Civil and Env. Eng. Utah Water Research Laboratory Utah State University Utah Climate Center 8200 Canyon Road Logan, UT 84322-8200 randy.martin@usu.edu (435) 797-1585 Dr. Munkh Baasandorj Utah Division of Air Quality Utah Dept. of Env. Quality and, Dept .of Atmospheric Sciences University of Utah Salt Lake City, UT <u>mbaasandorj@utah.gov</u> (801) 536-4407

THE

UNIVERSITY

OF UTAH®



UTAH DEPARTMENT of ENVIRONMENTAL QUALITY

Why the concern with gasphase ammonia in Northern Utah (and SE Idaho)

Utah (and SE Idaho) PM_{2.5} Non-Attainment Areas

Air Quality

Worst Cities in the Nation 1. Logan 2. Ogden 3. Provo 4. Salt Lake City

State of the Air American Lung Association Top Polluted U.S. Cities (24-hr PM 2.5)

2013 (2011-2013 data) - April 2014 report -

(1) Fresno-Madera, CA

(2) Visalia-Porterville-Hanford, CA

(3) Bakersfield, CA

(4) LA-Long Beach, CA

(5) Modesto-Merced, CA

(6) Pittsburgh, PA-OH-WV

(7) Fairbanks, AK

(8) SLC-Orem-Provo, UT

(9) El Paso, Las Cruces, TX-NM

(10) San Jose-SF-Oakland, CA

(11) Logan, UT-ID

2014 (2011-2013 data) - April 2015 report -

(1) Fresno-Madera, CA

(2) Bakersfield-Delano, CA

(3) Visalia-Porterville, CA

(4) Modesto-Merced, CA

(5) LA-Long Beach-Riverside, CA

(6) San Jose-SF-Oakland, CA

(7) SLC-Ogden-Clearfield, UT

(8) Logan, UT-ID

(9) Fairbanks, AK

(10) Pittsburgh, PA-OH-WV

2015 (2012-2014 data) - April 2016 report -

(1) Bakersfield-Delano, CA

(2) Fresno-Madera, CA

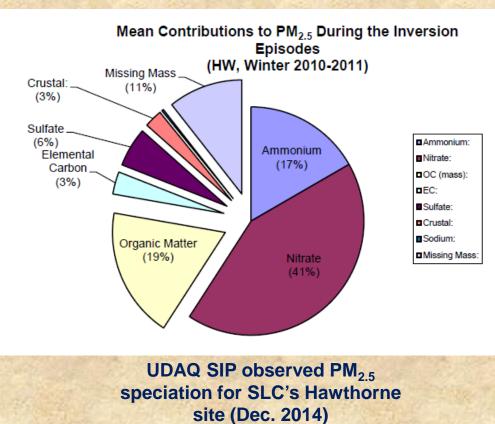
(3) Visalia-Porterville, CA

(4) Modesto-Merced, CA

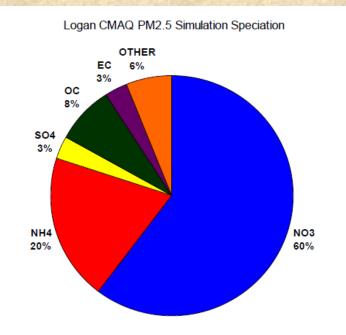
(5) Fairbanks, AK

(6) SLC-Orem-Provo, UT

(7) Logan, UT-ID

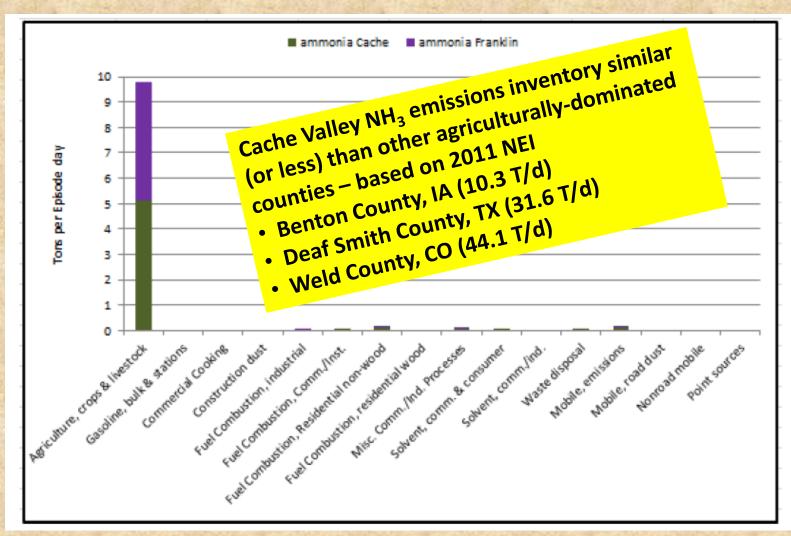

(8) San Jose-SF-Oakland, CA

(9) LA-Long Beach-Riverside, CA

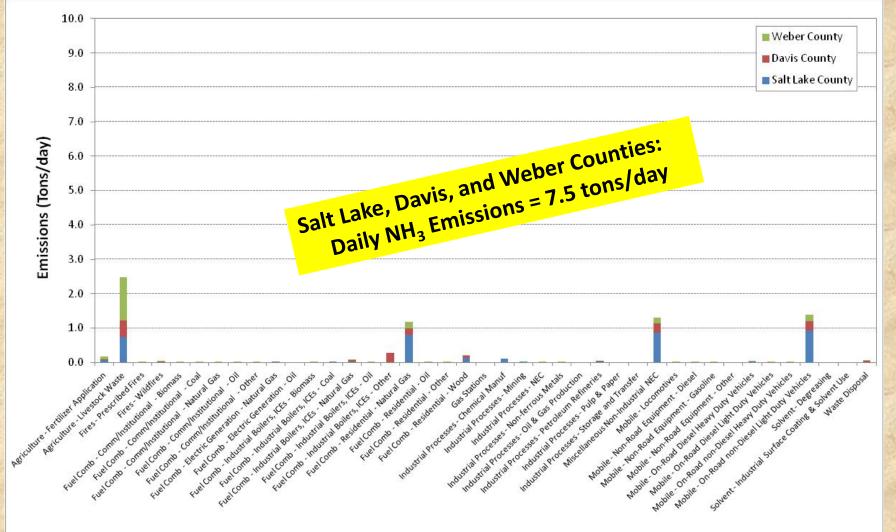

(10) Missoula, MT

Salt Lake and Cache Valley PM_{2.5} Composition

- For both SLC and CV airsheds, ammonium nitrate (NH₄NO₃) averages > 50% of wintertime PM_{2.5} mass
 - modeled & measured



During elevated $PM_{2.5}$ episodes in CV, NH_4NO_3 accounts for 80-95% $PM_{2.5}$ mass


UDAQ SIP modeled PM_{2.5} speciation for Cache Valley (Dec. 2014)

Cache Valley SIP NH₃ Emissions Inventory

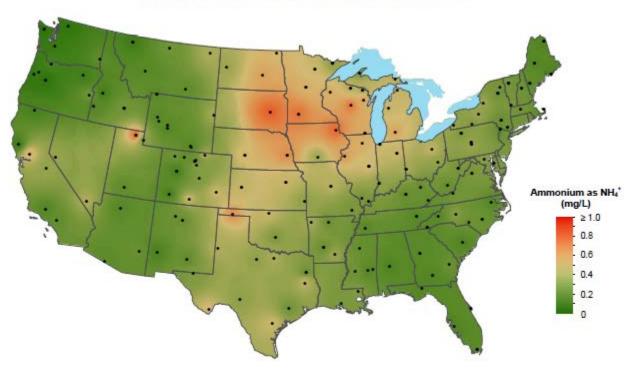
Idaho DEQ, Cache Valley Idaho PM_{2.5} Nonattainment Area SIP, Dec. 2012

Salt Lake Valley NH₃ Emissions Inventory

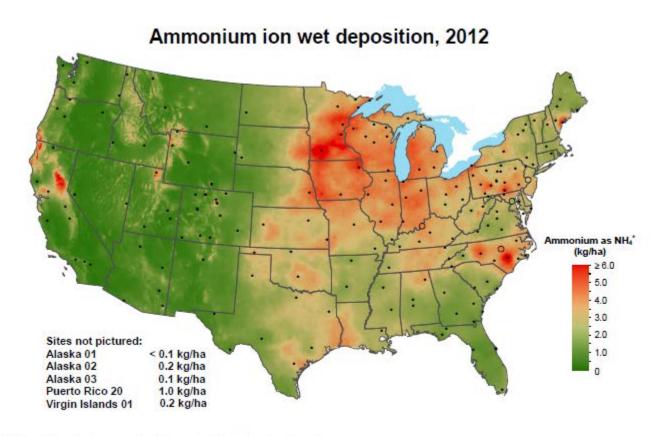
US EPA 2011 National Emissions Inventory (EI) Data

So...how much ammonia is available in the region's airsheds?

NADP's Nation Trends Network (NTN) Ammonium Ions (1988)


Ammonium ion concentration, 1988

National Atmospheric Deposition Program/National Trends Network http://nadp.isws.illinois.edu

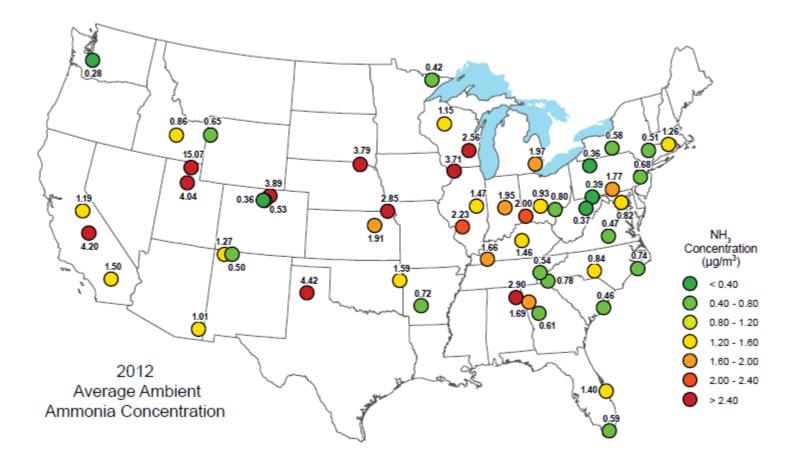

NADP's Nation Trends Network (NTN) Ammonium Ions (1989)

Ammonium ion concentration, 1989

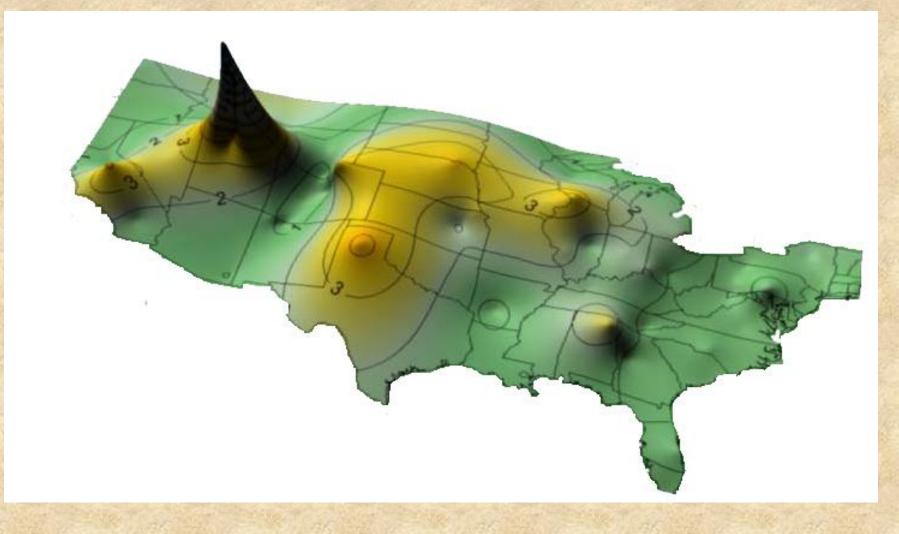
National Atmospheric Deposition Program/National Trends Network http://nadp.isws.illinois.edu

NADP's Nation Trends Network (NTN) Ammonium Ion Wet Deposition

National Atmospheric Deposition Program/National Trends Network http://nadp.isws.illinois.edu


Utah Sites in NADP's Ammonia Monitoring Network (AMoN)

- Established under NADP in Oct. 2007


 Passive (Radiello), 2-wk duration gas-phase ammonia (NH₃) samplers
- 3 AMoN cites currently in Utah
 - NADP NTN UT01 (Cache Valley) est'd AMoN Nov. 2011
 - NADP AMoN UT97 (Salt Lake City) also est'd Nov. 2011
 - NADP AMoN UT09 (CNP Island in the Sky) est'd May 2014
 - Class I area, collocated with a long-established IMPROVE site

NADP's Ammonia Monitoring Network (AMoN)

Ambient Ammonia Monitoring Network (AMoN)

"The Super Volcano" (gaseous NH₃; AMoN 2012 data, µg/m³)

NO WARNING, NO ESCAPE.

CACHE VALLEY NH3

But...are the seemingly high AMoN sites representative for the local airsheds?

Dec. 2002 – March 2004 (CV)

week-long denuder & filter samples at Logan city sampling site

Nov. – Mar. 2004/2005 (CV)

hourly chemilumenescent measurements at Logan (urban) and Amalga (rural)

Winter (Jan.-Mar.) and Summer (Jun.-Jul.) 2006 (CV)

- valley-wide network of 17 arrayed passive Ogawa NH₃ samplers
- three, 5-7 day sample periods during each season

UT01 AMoN site initiated in Oct. 2011 (CV)

2-week duration passive sampling

Winter 2016 (CV & Wasatch Front [SLC])

- valley-wide networks of arrayed passive Ogawa NH₃ samplers
- five, 7 day sample periods during each season

• Dec. 2002 – March 2004 (CV)

- week-long denuder & filter samples at Logan city sampling site
- annual [NH₃] avg = 5.7 μ g/m³; winter [NH₃] avg = 9.2 μ g/m³
- determined airshed NH₃ rich by around 2x more than 90% of the time
- Nov. Mar. 2004/2005 (CV)
 - hourly chemilumenescent measurements at Logan (urban) and Amalga (rural)
- Winter (Jan.-Mar.) and Summer (Jun.-Jul.) 2006 (CV)
 - valley-wide network of 17 arrayed passive Ogawa NH₃ samplers
 - three, 5-7 day sample periods during each season

• UT01 AMoN site initiated in Oct. 2011 (CV)

2-week duration passive sampling

• Winter 2016 (CV & Wasatch Front [SLC])

- valley-wide networks of arrayed passive Ogawa NH₃ samplers
- five, 7 day sample periods during each season

• Dec. 2002 - March 2004 (CV)

- week-long denuder & filter samples at Logan city sampling site
- annual [NH₃] avg = 5.7 μ g/m³; winter [NH₃] avg = 9.2 μ g/m³
- determined airshed NH₃ rich by around 2x more than 90% of the time
- Nov. Mar. 2004/2005 (CV)
 - hourly chemilumenescent measurements at Logan (urban) and Amalga (rural)
 - urban $[NH_3]$ avg = 13.2 µg/m³; rural $[NH_3]$ avg = 38.2 µg/m³
 - wind direction had little affect on rural NH₃ concentrations
- Winter (Jan.-Mar.) and Summer (Jun.-Jul.) 2006 (CV)
 - valley-wide network of 17 arrayed passive Ogawa NH₃ samplers
 - three, 5-7 day sample periods during each season
- UT01 AMoN site initiated in Oct. 2011 (CV)
 - 2-week duration passive sampling

Winter 2016 (CV & Wasatch Front [SLC])

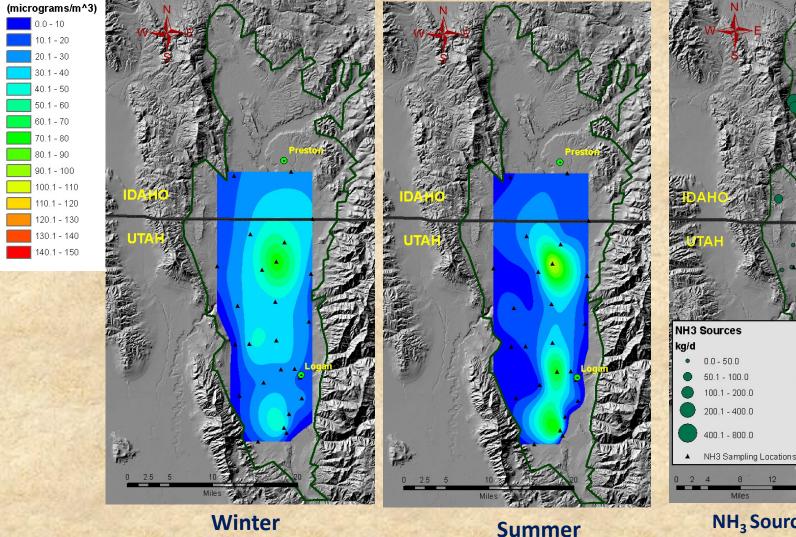
- valley-wide networks of arrayed passive Ogawa NH₃ samplers
- five, 7 day sample periods during each season

• Dec. 2002 – March 2004 (CV)

- week-long denuder & filter samples at Logan city sampling site
- annual [NH₃] avg = 5.7 μ g/m³; winter [NH₃] avg = 9.2 μ g/m³
- determined airshed NH₃ rich by around 2x more than 90% of the time
- Nov. Mar. 2004/2005 (CV)
 - hourly chemilumenescent measurements at Logan (urban) and Amalga (rural)
 - urban $[NH_3]$ avg = 13.2 µg/m³; rural $[NH_3]$ avg = 38.2 µg/m³
 - wind direction had little affect on rural NH₃ concentrations
- Winter (Jan.-Mar.) and Summer (Jun.-Jul.) 2006 (CV)
 - valley-wide network of 17 arrayed passive Ogawa NH₃ samplers
 - three, 5-7 day sample periods during each season
 - winter $[NH_3]$ avg = 29.1 µg/m³; summer $[NH_3]$ avg = 24.7 µg/m³
 - spatial trends mimicked known/suspected sources and strengths
- UT01 AMoN site initiated in Oct. 2011 (CV)
 - 2-week duration passive sampling

Winter 2016 (CV & Wasatch Front [SLC])

- valley-wide networks of arrayed passive Ogawa NH₃ samplers
- five, 7 day sample periods during each season

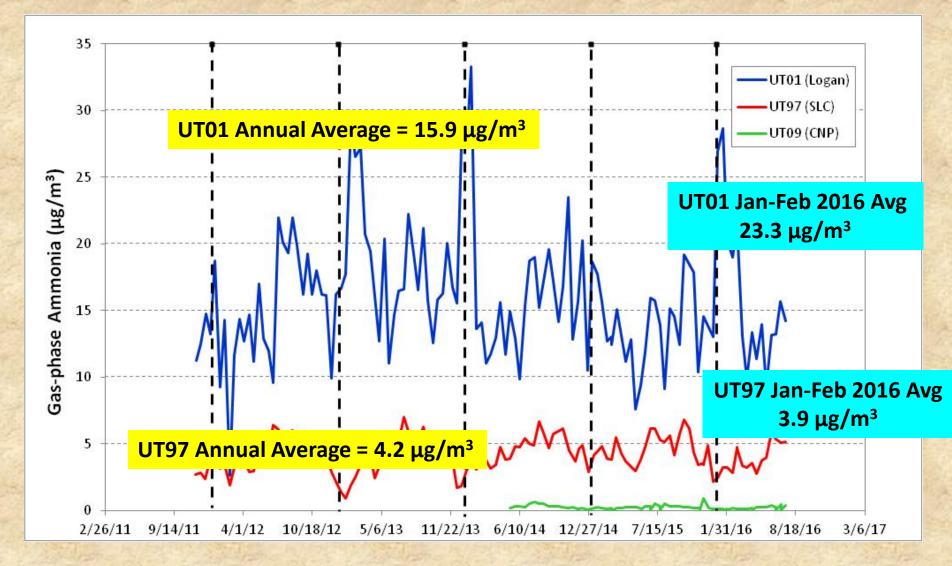

2006 Passive Ambient NH₃

(24.7 µg/m³)

Legend

▲ NH3 Sampling Locations

Ambient NH3 Concentration


(29.1 µg/m³)

NH₃ Source Density

• Dec. 2002 – March 2004 (CV)

- week-long denuder & filter samples at Logan city sampling site
- annual [NH₃] avg = 5.7 μ g/m³; winter [NH₃] avg = 9.2 μ g/m³
- determined airshed NH₃ rich by around 2x more than 90% of the time
- Nov. Mar. 2004/2005 (CV)
 - hourly chemilumenescent measurements at Logan (urban) and Amalga (rural)
 - urban $[NH_3]$ avg = 13.2 µg/m³; rural $[NH_3]$ avg = 38.2 µg/m³
 - wind direction had little affect on rural NH₃ concentrations
- Winter (Jan.-Mar.) and Summer (Jun.-Jul.) 2006 (CV)
 - valley-wide network of 17 arrayed passive Ogawa NH₃ samplers
 - three, 5-7 day sample periods during each season
 - winter $[NH_3]$ avg = 29.1 µg/m³; summer $[NH_3]$ avg = 24.7 µg/m³
 - spatial trends mimicked known/suspected sources and strengths
- UT01 AMoN site initiated in Oct. 2011 (CV)
 - 2-week duration passive sampling
 - (CV) annual [NH₃] avg = 15.9 μ g/m³; Jan.-Feb 2016 [NH₃] avg = 23.3 μ g/m³
 - (SLC) annual [NH₃] avg = $4.2 \mu g/m^3$; Jan.-Feb 2016 [NH₃] avg = $3.9 \mu g/m^3$
- Winter 2016 (CV & Wasatch Front [SLC])
 - valley-wide networks of arrayed passive Ogawa NH₃ samplers
 - five, 7 day sample periods during each season

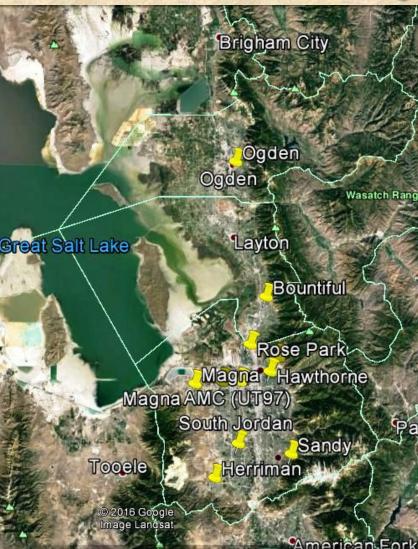
AMoN Annual Utah NH₃ (2011-2016)

• Dec. 2002 – March 2004 (CV)

- week-long denuder & filter samples at Logan city sampling site
- annual [NH₃] avg = 5.7 μ g/m³; winter [NH₃] avg = 9.2 μ g/m³
- determined airshed NH₃ rich by around 2x more than 90% of the time
- Nov. Mar. 2004/2005 (CV)
 - hourly chemilumenescent measurements at Logan (urban) and Amalga (rural)
 - urban $[NH_3]$ avg = 13.2 µg/m³; rural $[NH_3]$ avg = 38.2 µg/m³
 - wind direction had little affect on rural NH₃ concentrations
- Winter (Jan.-Mar.) and Summer (Jun.-Jul.) 2006 (CV)
 - valley-wide network of 17 arrayed passive Ogawa NH₃ samplers
 - three, 5-7 day sample periods during each season
 - winter $[NH_3]$ avg = 29.1 µg/m³; summer $[NH_3]$ avg = 24.7 µg/m³
 - spatial trends mimicked known/suspected sources and strengths
- UT01 AMoN site initiated in Oct. 2011 (CV)
 - 2-week duration passive sampling
 - (CV) annual [NH₃] avg = 15.9 μ g/m³; Jan.-Feb 2016 [NH₃] avg = 23.3 μ g/m³
 - (SLC) annual [NH₃] avg = $4.2 \mu g/m^3$; Jan.-Feb 2016 [NH₃] avg = $3.9 \mu g/m^3$
- Winter 2016 (CV & Wasatch Front [SLC])
 - valley-wide networks (10 each) of arrayed passive Ogawa NH₃ samplers
 - five, 7 day sample periods during each season

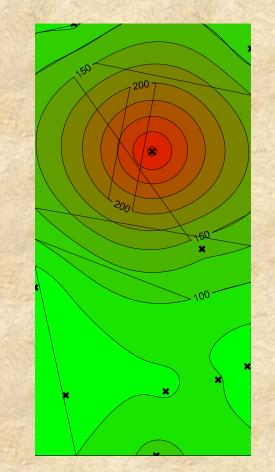
Jan/Feb 2016 Passive Ambient NH₃

USU Animal Science Farm (UT01)



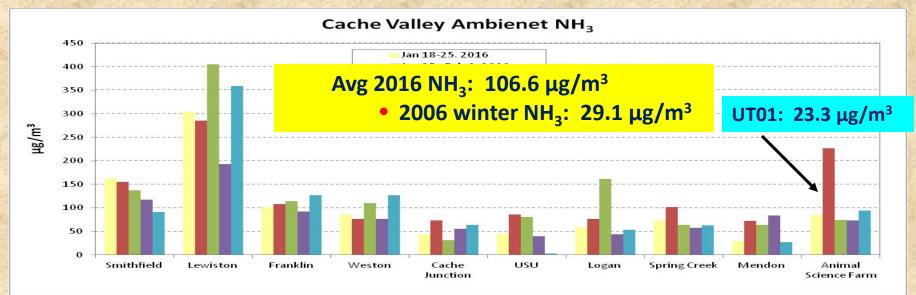
• Salt Lake City (U of U campus)

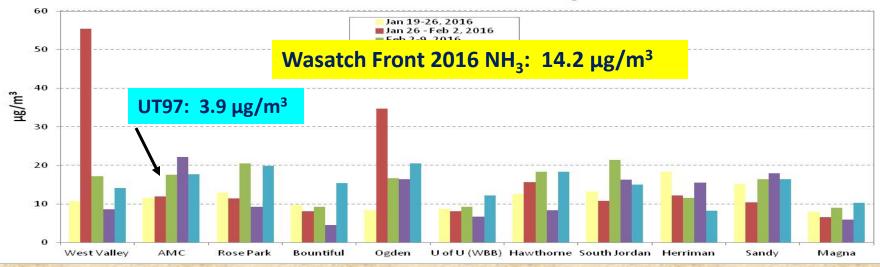
Jan/Feb 2016 Passive Ambient NH₃



Cache Valley 2016 NH₃ Network (roughly 55 km x 20 km)

Wasatch Front 2016 NH₃ Network (roughly 90 km x 25 km)


Jan/Feb 2016 Passive Ambient NH₃


CV Average 2016 NH_3 (ug/m^3)

Wasatch Front 2016 NH₃: 14.2 μg/m³

2016 Passive Ambient NH₃

Wasatch Front Ambient NH₃

• Dec. 2002 – March 2004 (CV)

- week-long denuder & filter samples at Logan city sampling site
- annual [NH₃] avg = 5.7 μ g/m³; winter [NH₃] avg = 9.2 μ g/m³
- determined airshed NH₃ rich by around 2x more than 90% of the time
- Nov. Mar. 2004/2005 (CV)
 - hourly chemilumenescent measurements at Logan (urban) and Amalga (rural)
 - urban $[NH_3]$ avg = 13.2 µg/m³; rural $[NH_3]$ avg = 38.2 µg/m³
 - wind direction had little affect on rural NH₃ concentrations
- Winter (Jan.-Mar.) and Summer (Jun.-Jul.) 2006 (CV)
 - valley-wide network of 17 arrayed passive Ogawa NH₃ samplers
 - three, 5-7 day sample periods during each season
 - winter $[NH_3]$ avg = 29.1 µg/m³; summer $[NH_3]$ avg = 24.7 µg/m³
 - spatial trends mimicked known/suspected sources and strengths
- UT01 AMoN site initiated in Oct. 2011 (CV)
 - 2-week duration passive sampling
 - (CV) annual [NH₃] avg = 15.9 μ g/m³; Jan.-Feb 2016 [NH₃] avg = 23.3 μ g/m³
 - (SLC) annual [NH₃] avg = $4.2 \mu g/m^3$; Jan.-Feb 2016 [NH₃] avg = $3.9 \mu g/m^3$
- Winter 2016 (CV & Wasatch Front [SLC])
 - valley-wide networks of arrayed passive Ogawa NH₃ samplers
 - five, 7 day sample periods during each season
 - CV [NH₃] avg = 106.6 μ g/m³; Animal Science Farm [NH₃] avg = 111.1 μ g/m³
 - SLC $[NH_3]$ avg = 14.2 µg/m³; AMC 2016 $[NH_3]$ avg = 16.2 µg/m³

Summary

- Cache Valley (UT01) "Ammonia Super Volcano" is not a myth!
 - 3-4x higher at UT01 than other continental AMoN sites
 - the Cache Valley NH₃ Super Volcano is real!
 - local hotspots exist, but abundant gas-phase NH₃ is ubiquitous
 - SLC (UT97) among "next tier" of highest concentration areas
- NADP's AMoN location s(UT01 and UT97) seem representative for the Cache Valley and Wasatch Front
 - separate 2016 network study showed approx 4x times higher at each location
 - even though UT01 within a few hundred yards of livestock (NADP footnote "B")
- Relatively consistent ambient measurements across several different measurement campaigns/protocols

Acknowledgements

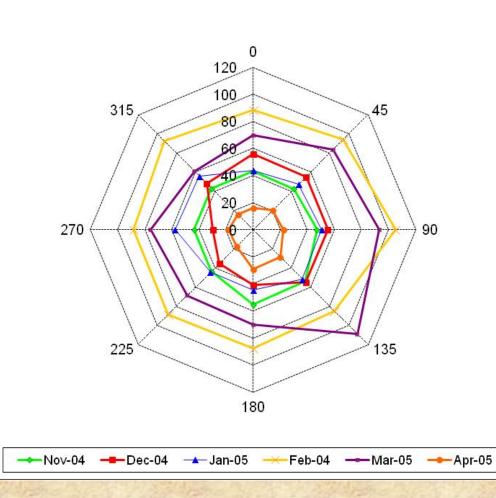
- Utah Division of Air Quality (UDAQ) and the Utah Air Monitoring Center (UAMC)
- Utah State University (USU) and the Utah Water Research Laboratory (UWRL)
- Utah Climate Center (UCC)
- Bear River Health Department (BRHD)
- Idaho Division of Environmental Quality (IDEQ)
- National Atmospheric Deposition Program (NADP) and the Ammonia Monitoring Network (AMoN)
- And way too many colleagues, students, and friends to mention...

PM_{2.5} in Northern Utah

A wetyo badddd yd (PMP 142 82 15 / 100 / 102 20112) 10)

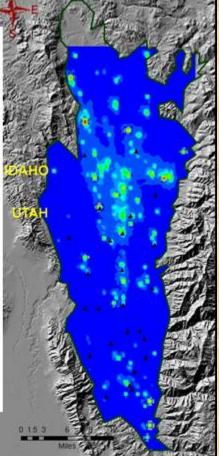
Dry Canyon ridge (approx. 6300 ft asl)

Test

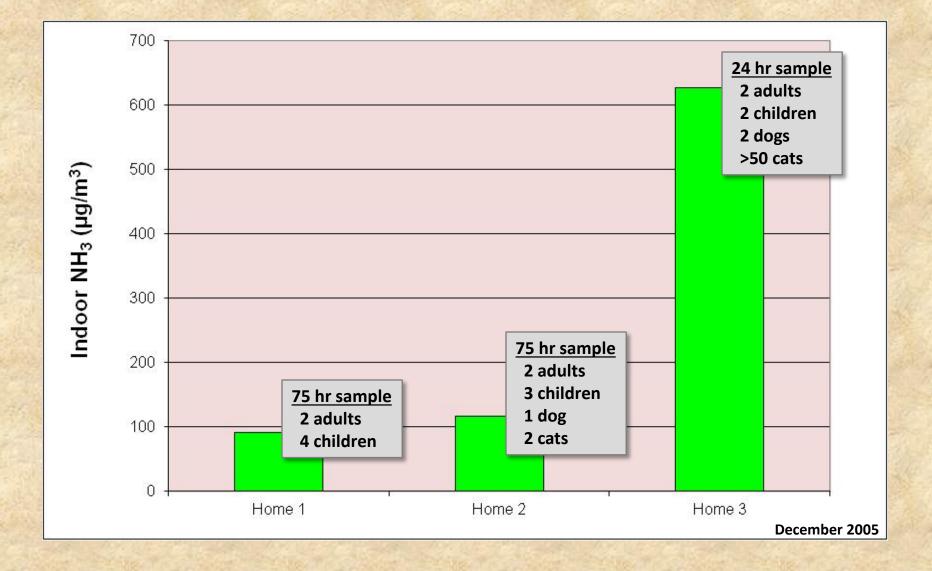

CV Highest 24-hr PM_{2.5}: 137.5 μg/m³ (Feb. 7, 2002) Highest 98th percentile 24-hr PM_{2.5}: 101.5 μg/m³ (Jan. 6, 2004)

Mar mar Hall Co.

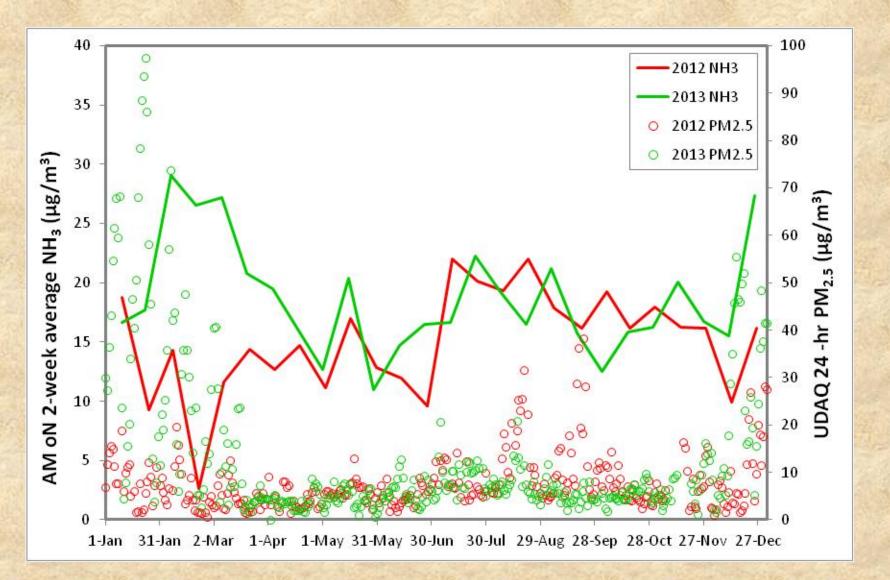
A really, really bad day ($PM_{2.5} = 102 \ \mu g/m^3$; Feb. 16, 2004)


04-05 Amalga (rural) NH₃ compared to Wind Direction

Wind Direction in Degrees vs Avg NH₃ (in ppb)


Modeled Ambient NH₃

Legend (micrograms/m^3) 1.0 - 5 5.1 - 10 10.1 - 15 15.1 - 20 20.1 - 25 25.1 - 30 30.1 - 40 40.1 - 50 50.1 - 100 100.1 - 150 150.1 - 200 200.1 - 250 250.1 - 300 300.1 - 350 350.1 - 772



Box Model: Overall NH₃ average = 4.5 μg/m³
summer: 7.5 μg/m³
winter: 1.7 μg/m³
ISCST3 Model: Overall NH₃ average = 19.6 μg/m³
summer: 12.0 μg/m³
winter: 27.2 μg/m³

Passive Indoor NH₃

UT01 NH₃ and Cache Valley PM_{2.5}

